Incremental Discriminant Analysis in Tensor Space

نویسندگان

  • Chang Liu
  • Weidong Zhao
  • Tao Yan
  • Qiang Pu
  • Xiaodan Du
چکیده

To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental tensor biased discriminant analysis: A new color-based visual tracking method

Most existing color-based tracking algorithms utilize the statistical color information of the object as the tracking clues, without maintaining the spatial structure within a single chromatic image. Recently, the researches on the multilinear algebra provide the possibility to hold the spatial structural relationship in a representation of the image ensembles. In this paper, a third-order colo...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Incremental multi-linear discriminant analysis using canonical correlations for action recognition

Canonical correlations analysis (CCA) is often used for feature extraction and dimensionality reduction. However, the image vectorization in CCA breaks the spatial structure of the original image, and the excessive dimension of vector often brings the curse of dimensionality problem. In this paper, we propose a novel feature extraction method based on CCA in multi-linear discriminant subspace b...

متن کامل

Tensor Graph-optimized Linear Discriminant Analysis

Graph-based Fisher Analysis (GbFA) is proposed recently for dimensionality reduction, which has the powerful discriminant ability. However, GbFA is based on the matrix-to-vector way, which not only costs much but also loses spatial relations of pixels in images. Therefore, Tensor Graph-based Linear Discriminant Analysis (TGbLDA) is proposed in the paper. TGbLDA regards samples as data in tensor...

متن کامل

A Novel Tensor Perceptual Color Framework based Facial Expression Recognition

The Robustness of Facial Expression Recognition (FER) is based on information contained in color facial images. The Tensor Perceptual Color Framework (TPCF) enables multilinear image analysis in different color spaces. This demonstrates that the color components provide additional information for robust FER. By using this framework color components RGB, YCbCr, CIELab or CIELuv space of color im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015